Branching morphogenesis in the fetal mouse submandibular gland is codependent on growth factors and extracellular matrix.

نویسندگان

  • Edward W Gresik
  • Noriko Koyama
  • Toru Hayashi
  • Masanori Kashimata
چکیده

Branching morphogenesis (BrM) is a basic developmental process for the formation of the lung, kidney, and all exocrine glands, including the salivary glands. This process proceeds as follows. An epithelial downgrowth invaginates into underlying mesenchyme, and forms a cleft at its distal end, which is the site of dichotomous branching and elongation; this process of clefting and elongation is repeated many times at the distal ends of the invading epithelium until the desired final extent of branching is reached. The distal ends of the epithelium differentiate into the secretory endpieces, and the elongated segments become the ducts. This presentation is a brief historical review of studies on BrM during the development of the submandibular gland (SMG).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulatory mechanisms of branching morphogenesis in mouse submandibular gland rudiments

Branching morphogenesis is an important developmental process for many organs, including the salivary glands. Whereas epithelial-mesenchymal interactions, which are cell-to-cell communications, are known to drive branching morphogenesis, the molecular mechanisms responsible for those inductive interactions are still largely unknown. Cell growth factors and integrins are known to be regulators o...

متن کامل

Inhibition of branching morphogenesis of mouse fetal submandibular gland by sodium fluoride--protection by epidermal growth factor.

As an initial step to study the effect of sodium fluoride on the oral environment, we investigated how sodium fluoride (NaF) affects the branching morphogenesis of fetal mouse submandibular gland (SMG). When mouse SMG was prepared from the embryo at 13 days post prenatal stage and cultured, gradual development of branching morphogenesis was observed. Addition of NaF affected this morphological ...

متن کامل

Branching morphogenesis of mouse salivary epithelium in basement membrane-like substratum separated from mesenchyme by the membrane filter.

Branching morphogenesis of mouse salivary gland has been studied with organ-culture system. We developed a novel transfilter culture system for analyzing branching morphogenesis of the salivary epithelium. The submandibular salivary epithelium from early 13-day mouse fetus, clotted with Matrigel and separated from the mesenchyme by membrane filter, showed extensive growth and branching morphoge...

متن کامل

Cell-Based Multi-Parametric Model of Cleft Progression during Submandibular Salivary Gland Branching Morphogenesis

Cleft formation during submandibular salivary gland branching morphogenesis is the critical step initiating the growth and development of the complex adult organ. Previous experimental studies indicated requirements for several epithelial cellular processes, such as proliferation, migration, cell-cell adhesion, cell-extracellular matrix (matrix) adhesion, and cellular contraction in cleft forma...

متن کامل

Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis.

Heparan sulfate proteoglycans are essential for biological processes regulated by fibroblast growth factors (FGFs). Heparan sulfate (HS) regulates the activity of FGFs by acting as a coreceptor at the cell surface, enhancing FGF-FGFR affinity, and being a storage reservoir for FGFs in the extracellular matrix (ECM). Here we demonstrate a critical role for heparanase during mouse submandibular g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of medical investigation : JMI

دوره 56 Suppl  شماره 

صفحات  -

تاریخ انتشار 2009